2,223 research outputs found

    Remote sensing and GIS-based analysis of cave development in the Suoimuoi Catchment (Son La - NW Vietnam)

    Get PDF
    Integration of remotely sensed imagery with ground surveys is a promising method in cave development studies. In this research a methodology was set up in which a variety of remote sensing and GIS techniques support cave analysis in the tropical karst area of the Suoimuoi catchment, NW Vietnam. In order to extract the maximum information from different remotely sensed data, the hue invariant IHS transformation was applied to integrate Landsat multispectral channels with the high resolution Landsat 7 ETM panchromatic channel. The resulting fused image was used, after enhancement, to visually and digitally extract lineaments. Aerial photos evaluated the extracted lineaments. Based on lineament density indices a fracture zone favorable for cave development is defined. The distance between caves and faults was investigated as well as the correspondence between the cave occurrence and the fracture zone

    BIOLOGICAL AMMONIA REMOVAL BY SUBMERGED AERATED FILTER FROM HANOI GROUND WATER

    Full text link
    Joint Research on Environmental Science and Technology for the Eart

    Minimal SU(5) Resuscitated by Long-Lived Quarks and Leptons

    Get PDF
    The issue of gauge unification in the (non-supersymmetric) Standard Model is reinvestigated. It is found that with just an additional fourth generation of non-sequential and long-lived quarks and leptons, SU(3)xSU(2)xU(1) gauge couplings converge to a common point of approximately 3.5x10^{15} GeV (corresponding to a proton lifetime of approximately 10^{34 plus/minus 1} years). This result is due to the non-negligible- but still perturbative- contributions of the top and fourth generation Yukawa couplings to the gauge two-loop beta functions, in contrast with the three generation case where such a contribution is too small to play an important role in unification.Comment: 12 pages, 2 figure

    Dynamics of Binary Mixtures with Ions: Dynamic Structure Factor and Mesophase Formation

    Get PDF
    Dynamic equations are presented for polar binary mixtures containing ions in the presence of the preferential solvation. In one-phase states, we calculate the dynamic structure factor of the composition accounting for the ion motions. Microphase separation can take place for sufficiently large solvation asymmetry of the cations and the anions. We show two-dimensional simulation results of the mesophase formation with an antagonistic salt, where the cations are hydrophilic and the anions are hydrophobic. The structure factor S(q) in the resultant mesophase has a sharp peak at an intermediate wave number on the order of the Debye-Huckel wave number. As the quench depth is increased, the surface tension nearly vanishes in mesophases due to an electric double layer.Comment: 24 pages, 10 figures, to appear in Journal of Physics: Condensed Matte

    Minimizing efforts in validating crowd answers

    Get PDF
    In recent years, crowdsourcing has become essential in a wide range of Web applications. One of the biggest challenges of crowdsourcing is the quality of crowd answers as workers have wide-ranging levels of expertise and the worker community may contain faulty workers. Although various techniques for quality control have been proposed, a post-processing phase in which crowd answers are validated is still required. Validation is typically conducted by experts, whose availability is limited and who incur high costs. Therefore, we develop a probabilistic model that helps to identify the most beneficial validation questions in terms of both, improvement of result correctness and detection of faulty workers. Our approach allows us to guide the experts work by collecting input on the most problematic cases, thereby achieving a set of high quality answers even if the expert does not validate the complete answer set. Our comprehensive evaluation using both real-world and synthetic datasets demonstrates that our techniques save up to 50% of expert efforts compared to baseline methods when striving for perfect result correctness. In absolute terms, for most cases, we achieve close to perfect correctness after expert input has been sought for only 20% of the questions

    Evidence of early multi-strange hadron freeze-out in high energy nuclear collisions

    Get PDF
    Recently reported transverse momentum distributions of strange hadrons produced in Pb(158AGeV) on Pb collisions and corresponding results from the relativistic quantum molecular dynamics (RQMD) approach are examined. We argue that the experimental observations favor a scenario in which multi-strange hadrons are formed and decouple from the system rather early at large energy densities (around 1 GeV/fm3^3). The systematics of the strange and non-strange particle spectra indicate that the observed transverse flow develops mainly in the late hadronic stages of these reactions.Comment: 4 pages, 4 figure

    Probing the Rho Spectral Function in Hot and Dense Nuclear Matter by Dileptons

    Full text link
    We present a dynamical study of e+e−e^+e^- and ÎŒ+Ό−\mu^+ \mu^- production in proton-nucleus and nucleus-nucleus collisions at CERN-SPS energies on the basis of the covariant transport approach HSD employing a momentum-dependent ρ\rho-meson spectral function that includes the pion modifications in the nuclear medium as well as the polarization of the ρ\rho-meson due to resonant ρ\rho−N-N scattering. We find that the experimental data from the CERES and HELIOS-3 Collaborations can be described equally well as within the dropping ρ\rho-mass scenario. Whereas corresponding dilepton qTq_T-spectra are found to be very similar, the inclusive dilepton yield in the invariant mass range 0.85≀M≀1.00.85 \leq M \leq 1.0 GeV should allow to disentangle the two scenarios experimentally.Comment: 13 pages RevTeX slightly revised, 6 eps-figure

    Isospin Multiplet Structure in Ultra--Heavy Fermion Bound States

    Full text link
    The coupled Bethe--Salpeter bound state equations for a QQˉQ\bar Q system, where Q=(U,D)Q=(U,D) is a degenerate, fourth generation, super--heavy quark doublet, are solved in several ladder approximation models. The exchanges of gluon, Higgs and Goldstone modes in the standard model are calculated in the ultra--heavy quark limit where weak Îł,W±\gamma, W^\pm and Z0Z^0 contributions are negligible. A natural I=0I=0 and I=1I=1 multiplet pattern is found, with large splittings occuring between the different weak iso--spin states when MQM_Q, the quark masses, are larger than values in the range 0.4TeV<MQ<0.8TeV0.4 TeV<M_Q<0.8 TeV, depending on which model is used. Consideration of ultra--heavy quark lifetime constraints and U−DU-D mass splitting constraints are reviewed to establish the plausibility of lifetime and mass degeneracy requirements assumed for this paper.Comment: 20 pages, 7 figures (hard copy available upon request), report# KU-HEP-93-2

    Thermometry with spin-dependent lattices

    Full text link
    We propose a method for measuring the temperature of strongly correlated phases of ultracold atom gases confined in spin-dependent optical lattices. In this technique, a small number of "impurity" atoms--trapped in a state that does not experience the lattice potential--are in thermal contact with atoms bound to the lattice. The impurity serves as a thermometer for the system because its temperature can be straightforwardly measured using time-of-flight expansion velocity. This technique may be useful for resolving many open questions regarding thermalization in these isolated systems. We discuss the theory behind this method and demonstrate proof-of-principle experiments, including the first realization of a 3D spin-dependent lattice in the strongly correlated regime.Comment: 22 pages, 8 figures v2: Several references added; Section on heating rates updated to include dipole fluctuation terms; Section added on the limitations of the proposed method. To appear in New Journal of Physic
    • 

    corecore